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SUMMARY

Smoothing splines provide flexible nonparametric regression estimators. However, the high
computational cost of smoothing splines for large datasets has hindered their wide application. In
this article, we develop a new method, named adaptive basis sampling, for efficient computation
of smoothing splines in super-large samples. Except for the univariate case where the Reinsch
algorithm is applicable, a smoothing spline for a regression problem with sample size n can be
expressed as a linear combination of n basis functions and its computational complexity is gen-
erally O(n3). We achieve a more scalable computation in the multivariate case by evaluating the
smoothing spline using a smaller set of basis functions, obtained by an adaptive sampling scheme
that uses values of the response variable. Our asymptotic analysis shows that smoothing splines
computed via adaptive basis sampling converge to the true function at the same rate as full basis
smoothing splines. Using simulation studies and a large-scale deep earth core-mantle boundary
imaging study, we show that the proposed method outperforms a sampling method that does not
use the values of response variables.

Some key words: Bayesian confidence interval; Core-mantle boundary; Nonparametric regression; Penalized least
squares; Reproducing kernel Hilbert space; Sampling.

1. INTRODUCTION

Consider the nonparametric regression model

yi = η(xi ) + εi (i = 1, . . . , n), (1)

where yi is the i th observation of the response variable, xi is the i th observation of the predictor
variable on the domain X ⊂ R

d (d � 1), η is the nonparametric function to be estimated, and
the εi s are independent and identically distributed random errors with mean zero and unknown
constant variance σ 2. A widely used method for estimating the unknown function η in (1) is via
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2 P. MA, J. Z. HUANG AND N. ZHANG

minimization of the penalized least squares criterion

PLS(η) = 1

n

n∑
i=1

{yi − η(xi )}2 + λ J (η), (2)

where J (η) is a quadratic functional quantifying the roughness of η. The first term on the right
of (2) discourages lack of fit, and the second term penalizes the roughness of η. The penalty
parameter λ controls the trade-off between the goodness-of-fit and smoothness of η. Multivariate
penalty parameters can be introduced when estimating a multivariate function, but we focus on
the single penalty case. See Wahba (1990), Gu (2013) and Wang (2011) for overviews of this
method, including how to introduce multivariate penalty parameters.

The standard formulation of smoothing splines performs the minimization of (2) in a repro-
ducing kernel Hilbert space H= {η : J (η) < ∞}, where J (·) is a squared semi-norm. Let NJ =
{η : J (η) = 0} be the null space of J (η) and assume that NJ is a finite-dimensional linear sub-
space of H with basis {ξi : i = 1, . . . , m}, where m = dim(NJ ). Denote by HJ the orthogonal
complement of NJ in H such that H=NJ ⊕ HJ . Let P be the orthogonal projection oper-
ator from H onto HJ . Then J (·) is a well-defined squared norm of HJ and for any η ∈H,
J (η) = J (Pη) = ‖Pη‖2

HJ
. With this norm, HJ is also a reproducing kernel Hilbert space, and

we denote its reproducing kernel by RJ (·, ·).
The reproducing kernel Hilbert space provides a very general framework for nonparametric

regression where the penalty term J (η) can be chosen to serve different purposes. For univariate
function estimation on a compact interval X , one can use

J (η) =
∫
X

(η(m))2 dx .

In particular, m = 2 corresponds to the commonly-used second derivative penalty and the mini-
mizer of (2) is a natural cubic spline. For estimating a multivariate function on a compact domain
X ⊂ R

d(d > 1), one can use the thin-plate spline penalty

Jmd(η) =
∫

· · ·
∫
X

∑
ν1+···+νd=m

m!

ν1! · · · νd !

(
∂mη

∂xν1
1 · · · ∂xνd

d

)2

dx1 · · · dxd (3)

where m is the order of derivatives and d is the number of predictor variables (Duchon, 1977).
As a special case, when m = 2 and d = 2 we have

J22(η) =
∫∫

X

(
∂2η

∂x2
1

)2

+
(

∂2η

∂x1∂x2

)2

+
(

∂2η

∂x2
2

)2

dx1 dx2.

See Gu (2013) for details about defining the penalty term and corresponding reproducing kernel
Hilbert space for modelling a multivariate regression function using smoothing spline analysis
of variance models.

Univariate smoothing splines can be computed in O(n) operations by applying the Reinsch
(1967) algorithm. In general, as we shall see in the next section, the computational cost of find-
ing the minimizer of (2) is in the order of O(n3) and thus is very expensive for big datasets. To
lower the computational cost, over the past decades, there have been efforts to find sparse sets
of basis functions to approximate the minimizer of (2). Luo & Wahba (1997) and Zhang et al.
(2004) applied variable selection techniques, but it is not clear whether the resulting estima-
tors share the good asymptotic properties of standard smoothing splines. Gu & Kim (2002) and
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Adaptive basis sampling 3

Kim & Gu (2004) developed a simple random sampling approach for basis function selection
and established a coherent theory for the convergence of their approximated smoothing splines.
To overcome the computational burden of smoothing splines, pseudosplines (Hastie, 1996) and
penalized splines (Ruppert et al., 2003) have also been proposed. Both use a small number of
fixed basis functions to approximate the smoothing splines; they are similar in spirit to Gu &
Kim (2002) and Kim & Gu (2004) but differ in the construction of the basis functions.

In this paper, extending the simple random sampling approach of Gu & Kim (2002) and Kim &
Gu (2004), we develop an adaptive basis sampling method for approximating smoothing splines.
Its novelty is that we select the basis functions according to the slicing along the range of the
response variable. These adaptively selected basis functions form a reduced model space, called
the effective model space. We compute the approximated smoothing spline estimator on the
reduced space to achieve efficient computation. This adaptive sampling strategy differs from
all existing methods based on sampling basis functions on the direction of the predictors. It can
recover fine details of the response surface better than the simple random sampling scheme.

We develop an asymptotic theory on the rate of convergence of our approximated smoothing
spline estimator. This theory is nonstandard because of the response-dependent sampling scheme,
and yields conditions on the dimension of the effective model space to warrant the same conver-
gence rate as the regular smoothing spline estimators. Such conditions provide useful practical
guidelines for the sample size of the adaptive sampling.

2. SMOOTHING SPLINES AND COMPUTATIONAL ISSUES

We first state the so-called representer theorem (e.g., Wahba, 1990), which declares that
although the original penalized least squares problem for smoothing splines is formulated in the
infinite-dimensional function spaceH= {η : J (η) < ∞}, the solution lies in a finite-dimensional
space. Recall that H has the tensor-sum decomposition H=NJ ⊕ HJ , {ξi }m

i=1 spans the null
space NJ of the quadratic functional J , and RJ (·, ·) is the reproducing kernel of HJ .

THEOREM 1. There exist vectors d = (d1, . . . , dm)T ∈ R
m and c = (c1, . . . , cn)

T ∈ R
n such

that the minimizer of (2) over H can be represented as

η(x) =
m∑

k=1

dkξk(x) +
n∑

i=1

ci RJ (xi , x), x ∈X . (4)

Theorem 1 implies that we need search for the minimizer of (2) only over the collection of
functions of form (4), so the problem reduces to finding the coefficient vectors d and c that
satisfy a system of linear equations. Let x = (x1, . . . , xn)

T be the vector of observed values of
the predictor variable, and y = (y1, . . . , yn)

T be the vector of corresponding observations of the
response variable. Let η = {η(x1), . . . , η(xn)}T denote the n evaluations of η(·) at x , S denote
the n × m matrix with the (i, j)th entry ξ j (xi ), and R denote the n × n matrix with the (i, j)th
entry RJ (xi , x j ). Then the decomposition (4) applied to x yields the system of equations

η = Sd + Rc,

and thus the first term on the right-hand side of (2) becomes

n−1(y − Sd − Rc)T(y − Sd − Rc). (5)
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4 P. MA, J. Z. HUANG AND N. ZHANG

On the other hand, for any function η with the expansion (1), the penalty function J (η) in (2)
can also be written in a matrix form using the reproducing property of RJ (·, ·), i.e.,

〈RJ (xi , ·), RJ (x j , ·)〉HJ = RJ (xi , x j ).

Recall that P : H→HJ is a projection operator. For any η as in (4), Pη =∑n
i=1 ci RJ (xi , ·).

Hence

J (η) = ‖Pη‖2
HJ

=
〈

n∑
i=1

ci RJ (xi , x),

n∑
i=1

ci RJ (xi , x)

〉
HJ

=
n∑

i=1

n∑
j=1

ci RJ (xi , x j )c j = cT R c.

(6)

Combining (5) and (6), we see that the penalized least squares criterion (2) is reduced to

PLS(η) = 1

n
(y − Sd − Rc)T(y − Sd − Rc) + λ cT R c. (7)

Since PLS(η) is a quadratic form in both d and c, its minimizer has a closed-form expression.
Differentiating (7) with respect to d and c and setting the derivatives to zero, we obtain the linear
system of equations (

STS ST R

RTS RT R + nλR

)(
d
c

)
=
(

ST y

RT y

)
.

To solve this system, of size m + n, the computational cost is generally of the order O(n3), which
can be prohibitive when the sample size n is large. From Theorem 1, the number of basis functions
used to represent the solution is m + n, which grows with n. While the m basis functions for NJ

are needed, it may not be necessary to use all n basis functions for HJ . If a smaller number
of basis functions can provide a good approximation of the smoothing spline solution, then a
computationally efficient algorithm can be developed to handle cases with large sample size. We
discuss two sampling approaches for selecting basis functions in the next section.

3. SAMPLING OF BASIS FUNCTIONS

3·1. Uniform sampling of basis functions

We first review an approach to selecting basis functions by randomly sampling the observa-
tions of the predictor variable and discuss its limitations, and then present our new sampling
approach that involves the response variable.

From the representer theorem, each of the n basis functions for representing the function in
HJ is uniquely associated with an observed value of the predictor variable. Thus a natural idea
for selecting the basis functions is through randomly sampling the observed values of the pre-
dictor variable. Specifically, we draw a random sample of size n∗ from the observed predic-
tor values {xi }n

i=1, denoted as x∗ = (x∗
1 , . . . , x∗

n∗)T, and use the corresponding basis functions,
{RJ (x∗

i , x)}n∗
i=1, to represent functions in HJ . We then solve the penalized least squares prob-

lem in the effective model space HE =NJ ⊕ span{RJ (x∗
i , x), i = 1, . . . , n∗}. When n∗ is much

smaller than n, the computational cost can be significantly reduced.
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Fig. 1. Toy regression function with two close peaks: (a) true signal (solid line) and 100 observations (grey crosses);
(b) smoothing spline fit (solid line) with full basis; (c) smoothing spline fit (solid line) with 12 uniformly sampled
basis functions (UBS); (d) smoothing spline fit (solid line) with 12 adaptively sampled basis functions (ABS).
In (b)–(d), short vertical lines at the bottom mark the data points corresponding to the selected basis functions;

observations are indicated by grey crosses; the true signal is shown as dotted grey lines.

Gu & Kim (2002) and Kim & Gu (2004) proved that this uniform sampling scheme has some
nice theoretical properties. Under some reasonable conditions, the smoothing spline estima-
tor computed under this scheme can achieve the same asymptotic convergence rate as the full
basis smoothing spline estimator that uses all the basis functions indicated in the representer
theorem.

When the number of sampled basis functions increases, the estimator from the uniform sam-
pling strategy will approach the smoothing spline estimator and reveal the underlying true func-
tion. However, if constrained by computational resources, one may not sample enough basis
functions to achieve a satisfactory result. Figure 1 illustrates this with a toy example. The under-
lying true function is the density function of a two-component mixture of normal distributions.
Panel (c) shows the smoothing spline fit using 12 uniformly sampled basis functions, which does
not reveal the two peaks of the mixture components because uniform sampling does not select
the basis function corresponding to the point with the largest y-value. Unless the number of basis
functions is greatly increased, there is little chance that the estimator can capture this peak.

3·2. Adaptive sampling of basis functions

We propose a new sampling scheme to select basis functions which makes use of the observed
values of the response variable. This scheme may sample more basis functions in regions where
the response function has big changes and sample fewer basis functions where the response sur-
face is relatively flat. We call this new scheme adaptive basis sampling.

Like the uniform sampling scheme discussed in § 3·1, adaptive sampling also samples the basis
functions from the collection {RJ (xi , ·) : i = 1, . . . , n} as indicated in the representer theorem.
The difference is the way the sampling is performed. In adaptive basis sampling, we first group
the xi s according to the corresponding value of the response variable, and then draw random
samples within each group. The detailed procedure is given below.

Step 1. Divide the range of the responses {yi }n
i=1 into K disjoint intervals, S1, . . ., SK . Let

|Sk | denote the number of observations in Sk .

Step 2. For each Sk , consider the collection of all pairs (xi , yi ) where yi ∈ Sk , and draw a
random sample of size nk from this collection. Denote the sampled predictor values by x∗(k) =
(x∗(k)

1 , . . . , x∗(k)
nk ).
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Fig. 2. Bivariate nonparanormal copula density function. (a): contour plot of true function; (b)–(c): contour
plots of absolute values of fitting residuals by smoothing splines based on uniform basis sampling (UBS) and

adaptive basis sampling (ABS). The sampled basis functions are marked by +.

Step 3. Combine x∗(1), . . . , x∗(K ) together to form a set of sampled predictor values
{x∗

1 , . . . , x∗
n∗}. This set has size n∗ =∑K

k=1 nk .

Step 4. Form the effective model space

HE =NJ ⊕ span{RJ (x∗
j , ·), j = 1, . . . , n∗}.

Minimize the penalized least squares criterion (2) over this effective model space.

The first step of the adaptive basis sampling procedure groups together observations with
similar response values. It is the same operation as binning when constructing histograms and
slicing in sliced inverse regression (Li, 1991; Cook, 1998). Each set {(xi , yi ) : yi ∈ Sk} is referred
to as a slice of the data. We expect this adaptive sampling scheme to select more effective basis
functions than uniform sampling.

Figure 1(d) displays the smoothing spline fit from the adaptive sampling scheme with 12 basis
functions. The fit reveals the two peaks of the mixture components well, since basis functions
corresponding to the peak points are sampled.

To further illustrate how adaptive basis sampling works and compare it with uniform basis
sampling, we considered a two-dimensional example for which the response surface is a bivari-
ate nonparanormal copula density function; see § 5 for its analytical form. Figure 2(a) depicts
the contour plot of the true function, showing four peaks: two are significantly higher than the
others. Contour plots of absolute values of residuals after smoothing spline fitting, presented in
Figs. 2(b)–(c), indicate that the estimated two big peaks from adaptive basis sampling are closer to
the truth than from uniform basis sampling. That the adaptive basis sampling smoothing spline
yields a better estimate can be explained by the distribution of sampled basis functions, also
shown in Figs. 2(b) and (c): the basis functions sampled by uniform basis sampling are spread
over the whole domain while those sampled by adaptive basis sampling are mainly distributed
around the four peaks, especially the two significant ones.

In § 4, we show that the adaptive sampling scheme can achieve the asymptotic rate of conver-
gence of the original smoothing spline estimator, although a much smaller set of basis functions
is employed. The theoretical results of Gu & Kim (2002) and Kim & Gu (2004) for uniform
sampling cannot be applied to adaptive sampling, because values of the response variable are
used in selecting the basis functions.
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Adaptive basis sampling 7

3·3. Efficient computation

We now present the details of the computational algorithm when adaptive basis sampling is
used to compute the smoothing spline estimator. Recall that the selected data points are denoted
by x∗ = (x∗

1 , . . . , x∗
n∗)T. Under adaptive basis sampling, the minimizer of (2) is approximated by

ηA(x) =
m∑

k=1

dkξk(x) +
n∗∑
j=1

c j RJ (x∗
j , x).

We let S denote the n × m matrix with (i, j)th entry ξ j (xi ). Let R∗ be a n × n∗ matrix with
the (i, j)th entry RJ (xi , x∗

j ) and R∗∗ be a n∗ × n∗ matrix with the (i, j)th entry RJ (x∗
i , x∗

j ).
If we rearrange the original data by putting the selected data points x∗ at the front, R∗ is just
the left part of R while R∗∗ is the top-left corner of R. The evaluations of ηA at locations x ,
ηA = {ηA(x1), . . . , ηA(xn)}T, satisfy

ηA = SdA + R∗cA,

where dA = (d1, . . . , dm)T and cA = (c1, . . . , cn∗)T.
Similar to (7), we have

PLS(ηA) = 1

n
(y − SdA − R∗cA)T(y − SdA − R∗cA) + λ cT

A R∗∗ cA,

whose minimizer (d̂A, ĉA) satisfies the linear system of equations

(
STS ST R∗
RT∗S RT∗ R∗ + nλR∗∗

)(
dA

cA

)
=
(

ST y

RT∗y

)
. (8)

System (8) can be solved using a method described in Golub & Van Loan (1989). First, a pivoted
Cholesky decomposition is performed such that the first matrix on the left-hand side of (8) equals
GTG, where G is an upper triangular matrix. Then, forward and backward substitutions are used
to solve the system of equations to obtain the estimated coefficients. However, care should be
taken when R∗ is singular, i.e., the bottom diagonal elements of G are zeros. Kim & Gu (2004)
suggested replacing those zeros by an appropriate small value δ and proceeding as if R∗ is of
full rank.

A standard method for data-driven choice of the penalty parameter λ is to minimize the gener-
alized crossvalidation criterion (Craven & Wahba, 1979). To give a formal definition of this, note
that the fitted values ŷ = {η̂A(x1), . . . , η̂A(xn)}T can be obtained from the estimated coefficients
as ŷ = Sd̂A + R∗ĉA. In light of (8), ŷ = A(λ)y, where A(λ) is the smoothing matrix

A(λ) = (S, R∗)

(
STS ST R∗
RT∗S RT∗ R∗ + nλR∗∗

)+(
ST

RT∗

)
,

and C+ denotes the Moore–Penrose inverse of C . The criterion is defined as

GCV(λ) = n−1yT{I − A(λ)}2y

[n−1tr{I − A(λ)}]2
, (9)
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8 P. MA, J. Z. HUANG AND N. ZHANG

and we minimize it as a function of the penalty parameter λ (Tenorio et al., 2011), using standard
nonlinear optimization algorithms. We use the modified Newton algorithm developed by Dennis
& Schnabel (1996).

Now we calculate the computational complexity, using the fact that m � n∗ � n to simplify
the expressions. The construction of the linear system (8) is of the order O(nn∗2), the Cholesky
decomposition takes O(n∗3) flops, the subsequent forward and backward substitutions take
O(n∗2) flops respectively, and the evaluation of (9) requires the calculation of tr{A(λ)}, which
takes O(nn∗2) flops. The overall computational cost is of the order O(nn∗2). The efficient com-
putational scheme can also be used to compute Bayesian confidence intervals (Wahba, 1983);
see the Supplementary Material for details.

4. CONVERGENCE RATES FOR FUNCTION ESTIMATION

4·1. Regularity conditions

We first introduce an inner product associated with the marginal density fX (·) of the predictor
variable X . For any g1 and g2 in L2(X ), define

V (g1, g2) = 〈g1, g2〉 =
∫
X

g1(x)g2(x) fX (x) dx .

The norm induced by this inner product is a weighted version of the L2-norm and the weight-
ing function is the marginal density of the predictor. We define the mean squared error of the
estimator η̂A in estimating the regression function η as the quadratic functional

V (η̂A − η) = ‖η̂A − η‖2 = 〈η̂A − η, η̂A − η〉 =
∫
X

{η̂A(x) − η(x)}2 fX (x) dx .

This is a common measure in studying statistical properties of smoothing splines
(e.g., Gu & Qiu, 1994).

In the literature, the convergence rate of smoothing splines is usually characterized by an
eigenanalysis of the penalty functional J with respect to the quadratic functional V . We now
state two commonly-used technical conditions (Gu, 2013). A quadratic functional B is said to
be completely continuous with respect to another quadratic functional A, if for any ε > 0, there
exists a finite number of linear functionals L1, . . . , Lk such that L1(η) = · · · = Lk(η) = 0 implies
that B(η) � ε A(η); see Weinberger (1974, § 3.3).

Condition 1. The functional V is completely continuous with respect to J .

By Theorem 3.1 of Weinberger (1974), Condition 1 implies that V and J can be simulta-
neously diagonalized; see, e.g., Silverman (1982) and Gu (2013, § 9.1). More precisely, there
exist a sequence of eigenfunctions φν ∈H and the associated nonnegative sequence of eigenval-
ues ρν ↑ ∞ such that V (φν, φμ) = δνμ and J (φν, φμ) = ρνδνμ where δνμ is the Kronecker delta.
Furthermore, any function f satisfying J ( f ) < ∞ can be expressed as a Fourier series expansion
f =∑ν fνφν , where fν = V ( f, φν).

Condition 2. For some r > 1 and β > 0, ρν > βνr for sufficiently large ν.

This condition on the growth rate of the eigenvalues is essentially a requirement on the
smoothness of η ∈H. For one-dimensional cubic spline smoothing on a compact interval X
with J (η) = ∫X {η′′}2, Conditions 1 and 2 are satisfied with r = 4 when V (η) is equivalent to
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Adaptive basis sampling 9

the standard L2 norm (Utreras, 1981). For thin-plate splines on a bounded domain of X ∈ R
d

with the penalty (3), Conditions 1 and 2 are satisfied with r = 2m/d. For tensor-product smooth-
ing splines with penalty J (η) =∑s

β=1 θ−1
β ‖Pβη‖2

Hβ , one can prove that Condition 1 holds using
the argument in Example 9.2 of Gu (2013), and Condition 2 holds with r = 4 − ε, where ε > 0
(Wahba, 1990).

Condition 3. For a constant C < ∞, var{φν(X)φμ(X)} � C for all ν and μ.

Since φν is an orthonormal system relative to V (·, ·), i.e.,

V (φν, φμ) =
∫
X

φν(x)φμ(x) fX (x) dx = δνμ,

we have that

var{φν(X)φμ(X)} =
∫
X

φ2
ν (x)φ2

μ(x) fX (x) dx − δνμ.

Thus Condition 3 is equivalent to the requirement that
∫
X φ2

ν (x)φ2
μ(x) fX (x) dx is uniformly

bounded for all ν and μ.

4·2. Convergence rates

This section presents our main results on convergence rates. All proofs are given in the
Supplementary Material.

In our adaptive sampling scheme, the search for the smoothing spline estimator is restricted
to the effective model space HE . We first establish a lemma that justifies the use of the effective
model space. Let H � HE denote the orthogonal complement of HE in the reproducing kernel
Hilbert space H.

LEMMA 1. As λ → 0 and n∗λ2/r → ∞, if the function h is not in the effective model space,
i.e., h ∈H � HE , we have V (h) = op{λJ (h)}.

This result suggests that compared to λJ (h), V (h) is negligible when h is orthogonal to HE ,
and implies that the space orthogonal to the effective model space HE is effectively suppressed
by the penalty λJ (η). Hence, we can capture the essential features of the true function η0 by
restricting the estimator to the effective model space HE .

For completeness, we state below a standard result for the convergence rate of smoothing
splines (e.g., Theorem 9.17 of Gu, 2013).

THEOREM 2. If
∑

i ρ
p
i V (η0, φi )

2 < ∞ for some p ∈ [1, 2], as λ → 0 and nλ2/r → ∞, then
(V + λJ )(η̂ − η0) = Op(n−1λ−1/r + λp).

We now present our main result on the convergence rate of the smoothing spline estimator
based on the proposed adaptive basis sampling scheme.

THEOREM 3. If
∑

i ρ
p
i V (η0, φi )

2 < ∞ for some p ∈ [1, 2], as λ → 0 and n∗λ2/r → ∞, then
(V + λJ )(η̂A − η0) = Op(n−1λ−1/r + λp). In particular, when λ � n−r/(pr+1), the estimator
achieves the optimal convergence rate,

(V + λJ )(η̂A − η0) = Op{n−pr/(pr+1)}.
This theorem states that, under regularity conditions, the convergence rate of the smoothing

spline estimator using an adaptively sampled basis equals that of the smoothing spline estimator
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10 P. MA, J. Z. HUANG AND N. ZHANG

using the full basis indicated by the representer theorem. The parameter p in the condition yields
a faster rate of convergence for certain functions: for the roughest η satisfying J (η) < ∞, we
have p = 1, whereas for the smoothest η, we have p = 2; see Wahba (1985) for details.

Note that J (η0) =∑i ρi V (η0, φi )
2. When J (η0) < ∞, the condition in Theorem 3 holds

with p = 1, and the convergence rate is Op(n−r/(r+1)). When η0 is in the Sobolev space W m,2

on a bounded domain in R
d , we have r = 2m/d and Theorem 3 yields the convergence rate

n−2m/(2m+d), which is the optimal rate of convergence (Stone, 1982). For the case d = 1,
Claeskens et al. (2009) and Wang et al. (2011) showed that penalized splines can also achieve
the optimal rate of convergence.

Theorem 3 helps determine the dimension of the effective model space HE . With λ �
n−r/(pr+1), Lemma 1 and Theorem 3 require that n∗λ2/r → ∞, which suggests that a suitable
choice of n∗ should satisfy n∗ � n2/(pr+1)+δ , where δ is an arbitrary small positive number. For
univariate cubic smoothing splines with the penalty J (η) = ∫ 1

0 (η′′)2, r = 4 and λ � n−4/(4p+1),
a suitable choice of the dimension of the effective model space is n∗ = n2/(4p+1)+δ , which
lies in the interval (O(n2/9+δ), O(n2/5+δ)) for p taking values in [1, 2]. For tensor-product
splines, r = 4 − ε, where ε > 0, a suitable choice of the dimension of effective model space is
n∗ = n2/(4p+1)+δ, which is roughly in interval (O(n2/9+δ), O(n2/5+δ)). In our simulation study
and real data analysis, we take the dimension of the effective model space n∗ to be between 5n2/9

and 20n2/9.

5. SIMULATION RESULTS

Using simulated multivariate regression functions, we compared the smoothing spline estima-
tors based on adaptive basis sampling and uniform basis sampling in terms of estimation accuracy
and computational time. We also compared adaptive basis sampling with fast bivariate P-splines,
an efficient algorithm for bivariate spline smoothing (Xiao et al., 2013).

Some of our simulation set-ups involve the joint probability density of a p-dimensional non-
paranormal distribution (Liu et al., 2009)

ηcopula(x) = 1

(2π)p/2|�|1/2
exp

[
−1

2
{ f (x) − μ}T�−1{ f (x) − μ}

] p∏
j=1

| f ′
j (x j )|, (10)

where μ = 0, � has ones as diagonal entries, 0·5 as off-diagonal elements, and

f j (x) = α j sign(x) |x |α j ( j = 1, . . . , p).

This is essentially a probability density function for a Gaussian copula model.
We generated data according to model (1) where the predictor variable x was randomly gener-

ated from the uniform distribution over the domain of interest. The signal-to-noise ratio, defined
as var{η(X)}/σ 2, was set to three levels: 10, 2, 0·4. For each simulation set-up, samples of
n = 1600 were generated. We considered four regression function settings:

1. a bivariate blocks function, ηblocks(x〈1〉, x〈2〉) = blocks(x〈1〉), where blocks(·) is the uni-
variate blocks function used in (Donoho & Johnstone, 1994). It has frequent and irregular
abrupt changes in one direction and stays constant in the other. The domain of interest is
the unit square;

2. a bivariate copula function, given in (10), with p = 2, α1 = 2, α2 = 3. The domain of inter-
est is [−2, 2]2;
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Adaptive basis sampling 11

3. a 4-d additive function, η(x) = ηblocks(x〈1〉, x〈2〉) + ηcopula(x〈3〉, x〈4〉), where ηblocks and
ηcopula are as in set-ups 1 and 2;

4. a 6-d copula function, the function given in (10), with p = 6 and α j = 0·1 for all j . The
domain of interest is [−1, 1]6.

For all four settings, we computed the smoothing spline estimator using the full basis, and
using the bases chosen by adaptive basis sampling and uniform basis sampling. For adaptive
basis sampling, the number of slices was chosen based on the Scott (1992) method and, based
on the asymptotic results, the dimension of the effective model space was set to be 10n2/9, so
n∗ = 52 basis functions were sampled. For a fair comparison, the same number of basis functions
was used for uniform basis sampling. A thin-plate penalty was used and the penalty parameter λ

was selected by minimizing the generalized crossvalidation criterion. For cases with dimension
higher than two, we assumed a smoothing spline analysis of variance model with second-order
interactions to deal with the curse of dimensionality. For the two bivariate set-ups, we also applied
fast bivariate P-splines (Xiao et al., 2013), for which the number of interior knots for each pre-
dictor variable was set to be 11, yielding 121 interior knots in total.

To assess the estimation accuracy, we calculated the mean squared error for an estimator, which
is defined as n−1∑n

i=1{η̂(xi ) − η(xi )}2. Figure 3 presents boxplots of the mean squared errors
based on 100 runs for each set-up under three signal-to-noise ratios. For all set-ups, adaptive basis
sampling provides more accurate smoothing spline estimation than uniform basis sampling. Both
methods yield higher mean squared errors than the full basis smoothing spline, but this is the price
paid for efficient computation with large datasets. When the signal-to-noise ratio decreases, the
mean squared error for all methods gets larger and the differences among the methods diminish.

Under the two bivariate settings, adaptive basis sampling performs as well as the fast bivariate
P-splines of Xiao et al. (2013) for the bivariate copula function and significantly outperforms it
for the bivariate blocks function. The bivariate blocks test function is an extension of the univari-
ate blocks function commonly used to illustrate univariate spatial adaptive smoothers (Donoho
& Johnstone, 1994). However, our proposed method is not designed to achieve spatial adaptivity,
which requires location-varying penalty parameters, an idea extensively studied for univariate
smoothing splines (Pintore et al., 2006; Liu & Guo, 2010; Wang et al., 2013).

Table 1 summarizes the CPU times of all methods based on 100 runs using an Intel Xeon
2·90 GHz processor with 64 GB of DDR3 RAM. The computing time for the full basis smoothing
spline estimator is tens or hundreds times more than that for the basis sampling methods, and for
the bivariate cases, the fast bivariate P-spline is the fastest in computation.

6. REAL DATA EXAMPLE

At a depth of 2890 km in the Earth, the core-mantle boundary separates turbulent flow of liquid
metals in the outer core from slowly convecting, highly viscous mantle silicates. The core-mantle
boundary marks the most dramatic change in dynamic processes and material properties in our
planet, and accurate images of the structure at or near it over large regions are important for our
understanding of the geodynamical processes and the thermo-chemical structure of the mantle
and mantle-core system.

To accurately image the core-mantle boundary region, Wang et al. (2006) and Ma et al.
(2007) developed a generalized Radon transform to construct raw point images, and applied the
smoothing spline method to the raw images. In particular, they extracted seismic waves reflected
at core-mantle boundary regions from the public data management centre of the Incorporated
Research Institutions for Seismology. The seismic waves extracted were generated by around
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Fig. 3. Boxplots of the mean squared errors for four multivariate test functions under three signal-to-noise ratios,
SNR, (10, 2, 0·4), based on 100 simulation runs. Full, UBS and ABS stand for smoothing spline estimators with

full basis, uniform basis sampling and adaptive basis sampling. FBPS is fast bivariate P-splines.

1300 earthquakes with magnitude mb >5·2 that occurred between 1988 and 2002, and were
recorded at one or more of a total of nearly 1200 stations in central America. Along a 2500 km
strip, they then constructed point images of core-mantle boundary regions using a generalized
Radon transform. They constructed 163 713 point images at various depths and locations of the
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Adaptive basis sampling 13

Table 1. Means and standard errors (in parentheses) of computational time, in seconds, for
four multivariate cases, based on 100 simulation runs

True function SNR Full basis UBS ABS FBPS

2d blocks 10 399 (12) 5·20 (0·12) 5·14 (0·10) 1·38 (0·03)
2 408 (9) 7·16 (0·35) 6·40 (0·23) 1·41 (0·02)
0·4 361 (7) 5·00 (0·17) 4·99 (0·17) 1·51 (0·02)

2d copula 10 260 (3) 6·56 (0·20) 6·41 (0·21) 1·63 (0·03)
2 301 (6) 6·86 (0·18) 6·71 (0·33) 1·59 (0·03)
0·4 317 (8) 4·69 (0·16) 4·79 (0·14) 1·58 (0·03)

4d blocks + copula 10 1247 (26) 15·16 (0·60) 13·84 (0·59) –
2 1222 (25) 16·62 (0·96) 15·54 (0·76) –
0·4 1135 (19) 13·16 (0·66) 13·27 (0·60) –

6d copula 10 9336 (223) 162·88 (7·27) 145·14 (7·32) –
2 9572 (283) 179·12 (7·52) 181·27 (6·60) –
0·4 7639 (161) 143·10 (6·80) 135·01 (6·81) –

SNR, signal-to-noise ratio; UBS, uniform basis sampling; ABS, adaptive basis sampling; FBPS, fast bivariate
P-splines.

strip. At each depth and location, the point images constructed contain many noisy replicates
resulting from different reflection angles of the seismic waves, so further statistical analysis is
necessary to estimate the true image. In order to be computationally feasible, they estimated
the true image using smoothing splines at each location and interpolated the estimated images
from all locations to get the three-dimensional image. The image shows peaks of very different
magnitudes at several unexpected locations (van der Hilst et al., 2007).

In this section, we apply a smoothing spline with adaptive basis sampling directly to all point
images to estimate the three-dimensional image. We let yi j denote the point image at the i th
distance, x〈1〉, and the j th depth, x〈2〉. We consider the following model for the point images

yi j = η(x〈1〉i , x〈2〉 j ) + εi j .

Since the sample size is n = 163 713, the regular tensor-product smoothing spline is computa-
tionally prohibitive. Instead, we apply our cubic tensor-product smoothing spline with adaptive
basis sampling to the dataset with K = 10 slices and let the dimension of the effective model
space be n∗ = 155. Define k1(u) = u − 0·5,

k2(x) = 1

2

{
k2

1(x) − 1

12

}
, k4(x) = 1

24

{
k4

1(x) − k2
1(x)

2
+ 7

240

}
,

and R(u1, u2) = k2(u1)k2(u2) − k4(|u1 − u2|). The cubic tensor-product smoothing spline esti-
mator with adaptive basis sampling has the form

η(x) =
4∑

ν=1

dνφν(x) +
n∗∑
j=1

c j RJ (x∗
j , x),
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Fig. 4. The estimated image of core-mantle boundary (CMB) region structure using smoothing spline
with adaptive basis sampling.

where φ1(x) = 1, φ2(x) = k1(x〈1〉), φ3(x) = k1(x〈2〉), φ4(x) = k1(x〈1〉)k1(x〈2〉) and

RJ (x, y) = θ R(x〈1〉, y〈1〉) + θ2 R(x〈2〉, y〈2〉)
+ θ3 R(x〈1〉, y〈1〉)k1(x〈2〉)k1(y〈2〉) + θ4 R(x〈2〉, y〈2〉)k1(x〈1〉)k1(y〈1〉)
+ θ5 R(x〈1〉, y〈1〉)R(x〈2〉, y〈2〉).

The contour plot of the estimated image is provided in Fig. 4. There, we set the depth of
the core-mantle boundary, 2890 km, as coordinate zero for depth. We can clearly see a peak at
depth zero at all distances, which reveals that the core-mantle boundary is a major boundary. It is
interesting that we see two disconnected peaks in the depth around 200 km above the core-mantle
boundary: one is below and the other is above. We also calculated 95% Bayesian confidence
intervals and found them to indicate that these peaks are significantly nonzero. These structures
are likely to be the so-called D′′ region, and have also been detected using nonparametric mixed-
effect models developed in van der Hilst et al. (2007).
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